MMBT4209

PNP General Purpose Amplifier

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 10 mA as a switch and to 850 MHz as an amplifier.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	15	V
V _{CBO}	Collector-Base Voltage	20	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current - Continuous	10	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- NOTES:

 1) These ratings are based on a maximum junction temperature of 150 degrees C.

 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

PNP General Purpose Amplifier

Electrical Characteristics TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHARACTERISTICS					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 10 mA, I _B = 0	15		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = 10 μA, I _E	20		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	I _C = 10 mA, V _{CE} = 1.0 V	50		
V _{CE(s at)}	Collector-Emitter Saturation Voltage	$I_C = 1 \text{ mA}, I_B = 100 \text{ mkA}$		0.2	V
		$I_{\rm C} = 5 \text{mA}, I_{\rm B} = 0.5 \text{mA}$		0.3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 100 mkA	0.65	0.85	V
		$I_{\rm C} = 5 \text{mA}, I_{\rm B} = 0.5 \text{mA}$		0.95	V

SMALL SIGNAL CHARACTERISTICS

f _T	Current Gain - Bandwidth Product	I_{C} = 10 mA, V_{CE} = 20 V,	850		Mhz
C _{obo}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, I_{E} = 0,$ f = 1.0 MHz		2.0	pF
C _{ibo}	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_{C} = 0,$ f = 1.0 MHz		3.0	pF

SWITCHING CHARACTERISTICS

t _r	Rise Time	I _C = 10 mA, I _{B1} = 1.0 mA	35	ns
tf	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mA}$	50	ns

Spice Model