Электрика-это просто!.ru
Наш адрес-elektrikaetoprosto@yandex.ru

Электрическое сопротивление.

Закон Ома.

Законы Кирхгофа.

Калькулятор.



Электротехника-основы теории.


Понятие эл. сопротивления.
Закон Ома для участка цепи.
Общий закон Ома.
Калькулятор закона Ома.
Законы Кирхгофа.
Роль законов Ома и Кирхгофа.
Георг Симон Ом. Биография.
Кирхгоф Густав Роберт.Биография.


Любая электрическая цепь обязательно содержит в себе источник электрической энергии и ее приемник. В качестве примера рассмотрим простейшую электрическую цепь, состоящую из батарейки и лампочки накаливания.

Батарейка - это источник электрической энергии, лампочка - ее приемник. Между полюсами источника электроэнергии имеется разность потенциалов(+ и -), при замыкании цепи начинается процесс ее выравнивания под действием электродвижущей силы, сокращенно - ЭДС. По цепи протекает электрический ток, совершая работу - нагревая спираль эл.лампочки, спираль начинает светиться.

Таким образом происходит преобразование электрической энергии в энергию тепловую и энергию света.
Электрический ток(J) представляет из себя упорядоченное движение заряженных частиц, в данном случае - электронов.
Электроны имеют отрицательный заряд, и по этому, их движение направлено к положительному(+) полюсу источника питания.

При этом, всегда образуется электромагнитное поле, распостраняясь от (+) к (-) источника(навстречу движению электронов) через электрическую цепь со скоростью света. Традиционно, принято считать, что электрический ток(J) движется от положительного(+) полюса к отрицательному(-).

Упорядоченное движение электронов, через кристаллическую решетку вещества, являющегося проводником не проходит беспрепятственно. Электроны взаимодействуют с атомами вещества, вызывая его нагрев. Таким образом, вещество оказывает сопротивление(R), протекающему через него, электрическому току. И чем больше величина сопротивления, при той же величине тока - тем сильнее нагрев.

Электрическое сопротивление - это величина, характеризующая противодействие электрической цепи (или её участка) электрическому току, измеряется в омах. Электрическое напряжение(U)- величина разности потенциалов источника электрического тока. Электрическое напряжение(U), электрическое сопротивление(R),электрический ток(J) - это основные свойства простейшей электрической цепи, между собой они находятся в определенной зависимости.



Закон Ома для участка цепи.

Для участка замкнутой электрической цепи, справедливой является следующая зависимость:

J=U/R.

Это математическое соотношение носит название - закон Ома для участка цепи. С помощью этой формулы, можно вычислить значение любого из свойств цепи, зная значения двух остальных. Пользуясь "Треугольником Ома", изображенным на рисунке ниже, можно наглядно представить как это делается.

Изображение  Треугольника  Ома.

Закрываем пальцем неизвестную величину, требующую определения. Положение величин оставшихся не закрытыми, подскажет нам, что делать. Как вы сами видите, здесь как раз, возможны три варианта.
1.Чтобы найти силу тока делим величину напряжения на величину сопротивления - вертикальная линия внутри, символизирует деление.
2. Для нахождения сопротивления необходимо разделить величину напряжения на величину тока.
3. Неизвестную величину значения напряжения, получаем умножая величину силы тока на величину сопротивления.

Напряжение измеряется в вольтах(1 вольт), сила тока в амперах(1 ампер), сопротивление в омах(1 ом).

Пример вычисления. Нам известно напряжение источника электроэнергии(U)-2.5 вольт, сопротивление приемника(R) - 10 ом. Требуется узнать силу тока(J). Итак, подставляя известные значения в формулу закона Ома получаем: J=2.5/10; J=0.25 Полученое значение - 0,25 ампер.

Зная силу тока(J) и напряжение(U) можно узнать, мощность(P) потребляемую приемником электроэнергии. P=U*J; P=0.25*2.5; P=1 Итак, мощность нашего приемника(лампочки) - 1 ватт.



Общий Закон Ома..

J=E/Rвнутр.+Rвнеш.

E в этой формуле обозначает, электродвижущую силу источника питания. Rвнутр.- величина внутреннего сопротивления источника электрического тока. Rвнеш.- величина сопротивления электрического приемника + сопротивление проводников цепи.

Электрическое напряжение(U) и ЭДС(E) имеют одну и ту же природу. ЭДС - это значение напряжения(U) на полюсах источника тока, без нагрузки(приемника энергии), при разомкнутой цепи. ЭДС цепи, всегда ВЫШЕ ее рабочего напряжения(U),когда цепь замкнута и приемник энергии(нагрузка) подключен.

Калькулятор закона Ома.

Напряжение.
Сопротивление.
Сила тока.
Мощность.

С помощью калькулятора Закона Ома, расположенного выше, можно легко вычислить значения силы тока, напряжения и сопротивления любого приемника электрической энергии. Так же, подставляя значения напряжения и тока, можно определить его мощность, и наоборот.

Например, необходимо узнать ток потребляемый эл. чайником, мощностью 2,2квт.
В графу "Напряжение" подставляем значение напряжения нашей сети в вольтах - 220.
В графу "Мощность", соответственно, вводим значение мощности в ваттах 2200 (2.2квт) Нажимаем кнопку "Узнать силу тока" - получаем результат в амперах - 10. Если далее нажать кнопку "Сопротивление" , можно узнать, в добавок и электрическое сопротивление нашего чайника, во время его работы - 22 ома.


Законы Кирхгофа. Параллельное и последовательное подсоединение.

На рисунке ниже, вы можете увидеть примеры параллельного и последовательного соединения приемников электрической энергии. При параллельном соединении концы питающих проводников приемников сходятся в общих узловых точках. Каждый приемник оказывается включенным на общее напряжение приложенное к этим точкам. При последовательном соединении приемники включаются один за другим. В электрических цепях с таким соединением протекает общий ток. Цепи где присутствует параллельное соединение, относятся к разветвленным цепям, и имеют точки,где сходятся три и более проводников.Эти точки называют узлами. Участки цепи соединяющие два узла, называют ветвями цепи. При установившемся электрическом токе количество электричества притекающего в единицу времени к узлу, равно количеству электричества,утекающего от узла за то же время. Получается, что сумма токов, направленных к узлу, равна сумме токов, направленных от узла.

∑*J=0


Это равенство является выражением первого закона Кирхгофа, который гласит: алгебраическая сумма токов в узле равна нулю.

Следствием из первого закона Кирхгофа, является формула, с помощью которой зная величину сопротивления каждого приемника в отдельности, можно определить полное сопротивление всех их, в целом.

Rоб=R1*R2 / R1+R2

Т.е. величина произведения всех сопротивлений складывается и делится на величину их суммы. В нашем случае, умножаем 2 раза по 10 и делим на сумму 10+10 . Получаем, общее сопротивление = 100/20, окончательный результат = 5. Итак общее сопротивление нашей цепи - 5 ом. Если параллельно соединено n равных между собой сопротивлений R то общее сопротивление

Rоб = R/n



Калькулятор параллельного соединения двух сопротивлений.

Величина сопротивления1.
Величина сопротивления2.
Общее сопротивление.


С помощью расположенного выше калькулятора, можно легко расчитать величину общего сопротивления для двух сопротивлений, подключенных параллельно.

Второй закон Кирхгофа гласит: в замкнутой электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на отдельных участках цепи. Согласно этому закону для схемы изображенной на рисунке ниже можно записать:

Rоб =R1+R2

Т. е. при последовательном соединении элементов цепи общее сопротивление цепи равно сумме сопротивлений составляющих ее элементов, а напряжение распределяется между ними, пропорционально сопротивлению каждого.
Например, в новогодней гирлянде состоящей из 100 маленьких одинаковых лампочек, каждая из которых рассчитана на напряжение 2,5 вольт, включенной в сеть напряжением 220 вольт, на каждую лампочку будет приходиться 220/100=2,2 вольта.
И, конечно же, при таком раскладе она будет работать долго и счастливо.

Переменный ток.

Переменный ток в отличии от постоянного, не имеет постоянного направления. Например, в обычной бытовой эл. сети 220 вольт 50 герц, плюс с минусом меняются местами 50 раз в секунду. Законы Ома и Кирхгофа для цепи постоянного, тока применимы так же для цепей тока переменного, но только для электрических приемников обладающих активным сопротивлением в чистом виде, т. е. таких, как различные нагревательные элементы и лампочки накаливания.

Причем, все расчеты производятся с действующими значениями тока и напряжения. Действующее значение силы переменного тока численно равно эквивалентной по тепловому действию силе постоянного тока. Действующее значение Jперем.= 0,707*Jпост. Действующее значение Uперем.= 0,707*Uпост. Например в нашей домашней сети действующее значение переменного напряжения - 220 вольт, а максимальное (амплитудное) его значение = 220*(1 / 0,707) = 310 вольт.

Роль законов Ома и Кирхгофа, в повседневной жизни электрика.

Осуществляя свою трудовую деятельность, электрик (абсолютно любой и каждый), ежедневно сталкивается со следствиями этих фундаментальных законов и правил, можно сказать - живет в их реальности. Использует ли он теоретические знания, с большим трудом полученные в различных учебных заведениях, для выполнения повседневных трудовых обязанностей?
Как правило - нет! Чаще всего, просто - напросто, в отсутствии какой либо необходимости, это делать.

Ибо повседневная работа нормального электрика, состоит вовсе не из умственных вычислений, а наоборот - из четких, отточенных годами, физических действий. Нельзя сказать, что думать вовсе не приходиться. Совсем наоборот - ведь последствия необдуманных действий в этой профессии, обходятся порой, весьма дорого.

Иногда, встречаются среди электриков конструктора - любители, они же, чаще всего - рационализаторы. Эти люди, время от времени, используют имеющиеся у них теоретические знания с пользой для дела, разрабатывая и конструируя разнообразные устройства, как в личных целях, так и во благо родного производства. Без знания законов Ома и Кирхгофа, расчеты электрических цепей, составляющих схему будущего устройства совершенно невозможны.

В целом, можно сказать, что законы Ома и Кирхгофа являются в большей степени "инструментом" инженера - конструктора, нежели электромонтера.



Георг Симон ОМ (1787 - 1854) - биография.

Замечательный немецкий физик Георг Симон Ом, чье имя носит знаменитый закон электротехники и единица электрического сопротивления, родился 16марта 1789 г. в Эрлангене (федеральная земля Бавария). Его отец был известным в городе мастером-механиком. Мальчик Ом помогал отцу в мастерской и многому у него научился.

Отец Георга - Иоганн Вольфганг Ом, был потомственным слесарем, много времени уделявшим вопросам самообразования. Он женился на дочери эрлангенского кузнеца Марии Елизавете Беккин. Из 7 рожденных ею детей в живых осталось только трое, а сама она в 1799 умерла при родах. Иоганн Ом так и не оправился до конца жизни от потери «лучшей и нежнейшей из матерей», как он о ней говорил. Тогда его сыну Георгу было 10, Мартину -7, а дочери Барбаре - всего 5 лет. Воспитанием детей занимался отец, уделяя большое внимание их образованию.

Чтобы обеспечить семью, он ежедневно с утра до вечера занимался выполнением кузнечных и слесарных заказов, а каждую свободную минуту он посвящал детям. О том бесконечно многом, чем они обязаны отцу, впоследствии говорили оба сына слесаря Иоганна, ставшие профессорами: Георг - физиком, а Мартин - математиком. Даже на памятнике Ому в Мюнхене он изображен возле отца, крупного мужчины в рабочем фартуке, который, обняв за плечи восторженно внимающего ему сына, серьезно и нежно о чем-то рассказывает мальчику.

Учитель начальной школы подготовил Георга к поступлению в городскую гимназию В этом учебном заведении основное внимание уделялось изучению латыни и греческого языка. Что касается математики и особенно физики, то лишь занятия, которые проводил вместе с сыновьями дома Иоганн Ом, позволили им продвинуться в изучении этих наук. Из довольно ограниченных средств семьи всегда выделялись деньги для покупки книг по математике (они преобладали), но также по истории, географии, философии, педагогике, равно как и руководства по обработке металлов. Неудивительно, что у преклонявшегося перед наукой кузнеца появились знакомые (ставшие вскоре его друзьям), преподаватели университета. Они охотно занимались и с его одаренными сыновьями.

В 1805 Георг Симон Ом сам стал студентом Эрлангенского университета. При той подготовке, которая у него была, учиться в университете Георгу Ому было легко. Может быть, и по этой причине он с азартом окунулся в спорт (стал, в частности, лучшим бильярдистом и конькобежцем в университете), увлекся танцами. Отца такая перемена в сыне не могла не обеспокоить. Назревал первый и единственный раз в их жизни "конфликт отцов и детей". В результате Георг, проучившись в университете всего полтора года, покинул родительский дом, чтобы в швейцарском городке Готтштадте занять место преподавателя математики в частной школе. Так началась педагогическая деятельность Георга Ома.

Швейцария очаровала Георга. Ее природа, ее люди, в том числе его коллеги и ученики, крохотный городок, в котором самым большим зданием был старинный замок, в котором располагалась школа, наконец, хорошая зарплата - все это вызывало у него чувство восхищения, которым наполнены его письма домой. Огорчало лишь отсутствие ответных писем от отца, который был так глубоко травмирован размолвкой с сыном, что почти год не только не писал ему, но даже и отказывался читать его письма: Иоганну Ому казалось, что рухнули все надежды, которые он связывал со своим даровитым сыном. Время - лучший целитель. Постепенно переписка восстановилась, и отец, как и прежде, старался поддерживать Георга вниманием и советами.

Ом в 1911 все же вернулся в Эрланген, то уже в том же году сумел закончить университет, защитить диссертацию и получить ученую степень доктора философии. Более того, ему тут же была предложена в университете должность приват-доцента кафедры математики. Это было прекрасно, но всего через три семестра Георг Ом вынужден был по материальным соображениям искать другое место. Эти поиски были мучительными и долгое время безуспешными. Наконец пришло приглашение занять место учителя физики и математики в иезуитской коллегии Кельна. 37-летний Ом немедленно направился в Кельн.

Первым делом Георг проводит обследование всего парка приборов. Здесь обнаруживается, что многие приборы требуют ремонта, а то и замены. Но Ом не зря был прилежным учеником своего отца, который остается его первым советчиком. Тщательность работы, стремление как можно детальнее продумывать постановку экспериментов и готовить для них аппаратуру стало основой будущих успехов. Ом, который прежде уделял основное внимание математике, решительно и воодушевленно переключился на физику. Ома увлекли проблемы, связанные с протеканием электрических токов по проводникам.

Для характеристики проводников Ом в1820 г. ввел понятие "сопротивление", ему казалось, что проводник сопротивляется току. По-английски и по-французски сопротивление называется resistance, поэтому современный схемный элемент называется резистором, а первая буква R с легкой руки Ома до сих пор используется как обозначение резистора в схемах.
Школьникам наших дней, изучающим закон Ома, может показаться, что это - один из простейших законов физики: сила тока в проводнике прямо пропорциональна падению напряжения в нем и обратно пропорциональна сопротивлению. Но попробуйте мысленно перенестись в двадцатые годы 19 века!

Путь, по которому пошел Георг Ом, определялся ясным пониманием того, что первым делом нужно научиться количественно исследовать физическое явление. Для измерения тока уже раньше пытались использовать тот факт, что он вызывает нагревание проводника. Однако Г. Ом избрал для измерения тока не тепловое, а именно его магнитное действие, открытое Эрстедом. В приборе Ома ток, протекавший по проводнику, вызывал поворот магнитной стрелки, подвешенной на упругой расплющенной золотой проволочке. Экспериментатор, поворачивая микрометрический винт, к которому крепился верхний конец проволочки, добивался компенсации поворота, вызванного магнитным воздействием, и угол поворота этого винта и являлся мерилом тока.

Установка была смонтирована со всей возможной тщательностью и обеспечивала достаточную стабильность тока. Только после этого Ом устранил все первоначально имевшиеся источники неточностей и получил надежные результаты, касающиеся влияния на ток как геометрической формы проводников (их длины и сечения), так и их химического состава.

В 1826 в «Журнале физики и химии» появилась обширная статья Георга Ома «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата мультипликатора Швейггера» (так Ом называл применявшийся им гальванометр), в которой излагались основные результаты его исследований.

Публикация результатов опытов Ома в первое время не вызвала почти никаких отзывов. Узнав о работах Ома, сам великий Майкл Фарадей заинтересовался ими и выразил сожаление, что из-за незнания немецкого языка не может изучить их обстоятельнее. Что же касается немецких коллег Ома, то, когда, наконец, был опубликован пространный отзыв одного из них, его автор счел, что исследования Ома "не внушают серьезного уважения".

Тем не менее, хлопоты Ома о предоставлении ему годичного освобождения от учебных занятий ради возможности посвятить себя полностью научным исследованиям были в 1826 удовлетворены (правда, с сохранением лишь половинного оклада).
Георг Ом переезжает в Берлин, где живет и работает его брат Мартин, и ровно через год выходит обширная, содержащая 245 страниц, монография "Теоретическое исследование электрических цепей". Противники Ома не только отрицали его заслуги, но и активно мешали ему работать. Все хлопоты о месте, где можно было бы работать, оставались тщетными. Даже выступать в печати со своими доводами Ому было не просто.

«Нет пророка в своем отечестве!» Георг Ом в полной мере испытал это. Понимая важность полученных им научных результатов, он тщетно хлопотал о предоставлении ему той должности, которой он по праву заслуживал. Хотя срок его командировки в Берлин истекал, он считал невозможным оставить этот научный центр. В конце концов, ему предложили работу в Военной школе Берлина, но почти с символической нагрузкой — 3 часа в неделю (и с соответствующей оплатой). Ом, которого поддерживал брат, принял и такое предложение. Он продолжал упорно работать. В 1829 в «Журнале физики и химии» вышла еще одна его работа. В ней фактически закладывались принципиальные основы работы электроизмерительных приборов. В частности, был предложен используемый и сегодня эталон электрического сопротивления.

Только в 1833, через 6 лет после выхода основного труда Ома, ему предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ом немедленно перебрался в Нюрнберг. Вскоре его назначили инспектором по методике преподавания и поручили заведование кафедрой математики. В 1839 к этому добавились и обязанности ректора школы. Тогда же наметился и его переход на новую научную тематику: Ома привлекла акустика. В 1843 он показал, что простейшее слуховое ощущение вызывается гармоническими колебаниями, на которое ухо разлагает сложные звуки (акустический закон Ома).

Наметилось и международное признание. В 1841 работы Ома были переведены на английский язык, в 1847 — на итальянский, в 1860 — на французский. (Хотя перевода трудов Ома на русский язык не было, но именно работавшие в России Э. Х. Ленц и Б. С. Якоби первыми привлекли внимание широкой научной общественности к трудам Ома). В 1842 произошло событие, которое явилось первым важным знаком признания научных заслуг Георга Ома: он явился вторым немецким ученым, которого Лондонское Королевское общество наградило золотой медалью и избрало своим членом.

Наконец, через 20 лет ожидания, Георг Ом получил признание и на родине. В 1845 его избрали в Баварскую Академию Наук, а через четыре года пригласили в Мюнхен на должность экстраординарного профессора. Тогда же по королевскому указу он назначается хранителем государственного собрания физико-математических приборов и референтом по телеграфному ведомству при физико-техническом отделе Министерства государственной торговли. Одновременно он продолжает читать лекции по физике и по математике. Вся жизнь Георга Ома была отдана науке и поэтому семьи он не создал.

В 1852 исполнилось давнишнее желание Ома - он получил должность ординарного профессора. Но здоровье его уже пошатнулось. В 1854 он перенес серьезный сердечный приступ. 28 июня 1854 король Максимилиан издал указ об освобождении его от обязательного чтения лекций. Но до конца жизни ему оставалось всего 12 дней. Георг Ом скончался 6 июля 1854 года в половине одиннадцатого утра. Он был похоронен на старом южном кладбище города Мюнхена.

Исследования Георга Ома вызвали к жизни новые идеи, развитие которых вывело вперед учение об электричестве. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления — 1 Ом. Этот факт — дань уважения коллег, международное признание заслуг ученого.

Использован материал с сайта http://www.lgroutes.com/

Кирхгоф Густав Роберт (1824 - 1887) - биография.

Немецкий физик Густав Роберт Кирхгоф в Кёнигсберге. В 1846 г. он окончил Кёнигсбергский университет. Кирхгоф был профессором университетов в Бреслау (ныне Вроцлав, Польша) (1850) и Гейдельберге (1854); с 1875 г. он возглавлял кафедру математической физики в Берлинском университете.

Научную работу Кирхгоф начал, ещё будучи студентом. В 1845–1847 гг., занимаясь исследованием электрический цепей, он открыл закономерности протекания тока в разветвлённых цепях (правила Кирхгофа). В 1857 г. Кирхгоф опубликовал статью о распространении переменного тока по проводам, результаты которой во многом предвосхитили идеи Джеймса Максвелла, касающиеся электромагнитного поля.

В 1859 г. Кирхгоф занялся анализом связи между процессами испускания и поглощения света. На эти исследования его натолкнули наблюдения, сделанные ранее Л. Фуко и Дж. Стоксом, о близости положения в спектре Солнца тёмных (фраунгоферовых) D-линий и линий испускания в спектре Na. Вскоре он обнаружил интересное явление – обращение линий испускания в спектре Na при пропускании через пламя солнечного света: на месте светлых линий испускания появлялись отчётливые тёмные.

Как раз в это время к нему обратился Роберт Вильгельм Бунзен, занимавшийся анализом газов, основанным на наблюдении за изменением окраски пламени при введении в него разных элементов. Кирхгоф заметил, что метод анализа можно сделать более информативным, если наблюдать не просто окраску пламени, а его спектр. Совместная разработка этой идеи привела Бунзена и Кирхгофа к созданию спектрального анализа и открытию новых элементов – рубидия и цезия.

В 1859 г. на заседании Прусской академии наук Кирхгоф сделал сообщение об открытии закона теплового излучения, согласно которому отношение испускательной способности тела к поглощательной одинаково для всех тел при одной и той же температуре (закон Кирхгофа). В 1862 г. он ввел понятие «абсолютно чёрного тела» и предложил его модель – полость с небольшим отверстием. Разработка проблемы излучения «абсолютно чёрного тела» в конечном счёте привела к созданию квантовой теории излучения.

Кирхгоф внёс значительный вклад в обобщение теории дифракции Френеля, он занимался также теорией деформации твёрдых тел, колебанием пластин и дисков, движением тел в жидкой среде. Основные труды учёного – «Исследования спектра Солнца и спектров химических элементов» (1861–1862) и «Лекции по математической физике» (в четырёх томах, 1874–1894) сыграли большую роль в развитии теоретической физики.

Источники: 1. Биографии великих химиков. Перевод с нем. под ред. Быкова Г.В. – М.: Мир, 1981. 320 с. 2. Большая советская энциклопедия. В 30 тт.

На главную страницу
В начало